
HOW TO USE THIS DECK

This slide deck is meant to accompany the Ansible RHEL workshop, both
sections if needed.
Note that this deck is optional - the workshop content explains each and
every Ansible idea in detail already.

HOW TO IMPROVE THIS DECK

The workshop is a collaborative effort. Help us to improve it! You can leave
comments, and the BU will make sure to work on this. Tag for example
Roland (Wolters) or Sean (Cavanaugh) to ensure that they pick it up.

Speaking about the BU: the fact that this deck is now owned by an
organization and not individuals anymore hopefully ensures for the future
that the deck stays up2date over time as the workshop develops.

THANKS

HUGE THANK YOU to the following people - without them, this deck
would not have been possible.

Thanks to:

Kevin “GoKEV” Holmes
Phil Avery
Russell Pavlicek
Matt St Onge
Will Tome
Götz Rieger
Benjamin Blasco

Thanks for providing input, helping proofread, error check, and improving
this deck continuously.

Ansible Linux Automation Workshop
Introduction to Ansible for Red Hat Enterprise Linux Automation
for System Administrators and Operators

3

● Timing
● Breaks
● Takeaways

Housekeeping

4

● Introduction to Ansible Automation
● How it works
● Understanding modules, tasks & playbooks
● How to execute Ansible commands
● Using variables & templates
● Tower - where it fits in
● Basic usage of Tower
● Learn major Tower features: RBAC, workflows and so on

What you will learn

5

Introduction
Topics Covered:

● What is the Ansible Automation Platform?

● What can it do?

Automation happens when one person meets a
problem they never want to solve again

Teams are automating...

Lines Of Business Network Security Operations Developers Infrastructure

Ansible used in silo

DIY scripting automation

Open source config
management tool

Proprietary vendor supplied
automation

Ad-hoc Automation is happening in silos

Network

Infrastructure

Security

Developers

Is organic
automation enough?

Why Ansible?

Simple Powerful Agentless

App deployment

Configuration management

Workflow orchestration

Network automation

Orchestrate the app lifecycle

Human readable automation

No special coding skills needed

Tasks executed in order

Usable by every team

Get productive quickly

Agentless architecture

Uses OpenSSH & WinRM

No agents to exploit or update

Get started immediately

More efficient & more secure

What can I do using Ansible?
Automate the deployment and management of your entire IT footprint.

Orchestration

Do this...

Firewalls

Configuration
Management

Application
Deployment Provisioning Continuous

Delivery
Security and
Compliance

On these...

Load Balancers Applications Containers Clouds

Servers Infrastructure Storage And more...Network Devices

When automation crosses teams,
you need an automation platform

Lines Of Business

Network

Security Operations

Developers

Infrastructure

Red Hat Ansible Automation Platform

Lines of
businessNetwork OperationsSecurity Infrastructure Developers

Ansible Tower: Operate & control at scale

Ansible Engine: Universal language of automation

Fueled by an open source community

Engage

Scale

Create

Ansible Hosted Services: Engage users with an automation focused experience

Cloud Virt & Container Windows Network Security Monitoring

Ansible automates technologies you use
Time to automate is measured in minutes

AWS
Azure
Digital Ocean
Google
OpenStack
Rackspace
+more

Docker
VMware
RHV
OpenStack
OpenShift
+more

ACLs
Files
Packages
IIS
Regedits
Shares
Services
Configs
Users
Domains
+more

A10
Arista
Aruba
Cumulus
Bigswitch
Cisco
Dell
Extreme
F5
Lenovo
MikroTik
Juniper
OpenSwitch
+more

Checkpoint
Cisco
CyberArk
F5
Fortinet
Juniper
IBM
Palo Alto
Snort
+more

Dynatrace
Datadog
LogicMonitor
New Relic
Sensu
+more

Devops
Jira
GitHub
Vagrant
Jenkins
Slack
+more

Storage
Netapp
Red Hat Storage
Infinidat
+more

Operating
Systems
RHEL
Linux
Windows
+more

3
ROI on Ansible Tower

146%
< MONTHS
Payback on Ansible Tower

Financial summary:

SOURCE: "The Total Economic Impact™ Of Red Hat Ansible Tower, a June 2018 commissioned study conducted by Forrester Consulting on behalf of Red Hat."
redhat.com/en/engage/total-economic-impact-ansible-tower-20180710

Reduction in recovery time following
a security incident94%

84% Savings by deploying workloads
to generic systems appliances
using Ansible Tower

67% Reduction in man hours required
for customer deliveries

Red Hat Ansible Tower
by the numbers:

https://www.redhat.com/en/engage/total-economic-impact-ansible-tower-20180710

15

Section 1
Ansible Engine

16

Exercise 1.1
Topics Covered:

● Understanding the Ansible Infrastructure

● Check the prerequisites

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLAYBOOKS ARE WRITTEN IN YAML
 Tasks are executed sequentially
 Invoke Ansible modules

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 MODULES ARE “TOOLS IN THE TOOLKIT”
 Python, Powershell, or any language
 Extend Ansible simplicity to the entire stack

MODULES

- name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLUGINS ARE “GEARS IN THE ENGINE”
 Code that plugs into the core engine
 Adaptability for various uses & platforms

MODULES PLUGINS

{{ some_variable | to_nice_yaml }}

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

MODULES PLUGINS

INVENTORY

INVENTORY
List of systems in your infrastructure that
automation is executed against

 [web]
 webserver1.example.com
 webserver2.example.com

 [db]
 dbserver1.example.com

 [switches]
 leaf01.internal.com
 leaf02.internal.com

 [firewalls]
 checkpoint01.internal.com

 [lb]
 f5-01.internal.com

ANSIBLE AUTOMATION ENGINE

USERS

HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

MODULES PLUGINS

INVENTORY

PUBLIC / PRIVATE
CLOUD PUBLIC / PRIVATE

CLOUD

 CLOUD
 Red Hat Openstack, Red Hat Satellite, VMware,
 AWS EC2, Rackspace, Google Compute Engine, Azure

CMDB

ANSIBLE AUTOMATION ENGINE

USERS

HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

MODULES PLUGINS

INVENTORY

 CMDB
 ServiceNow, Cobbler, BMC, Custom cmdb

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

CMDB

ANSIBLE AUTOMATION ENGINE

USERS

CLI

ANSIBLE
PLAYBOOK

MODULES PLUGINS

INVENTORY

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

CMDB

HOSTS

NETWORK
DEVICES

AUTOMATE EVERYTHING
Red Hat Enterprise Linux, Cisco routers, Arista
switches, Juniper routers, Windows hosts, Check
Point firewalls, NetApp storage, F5 load balancers
and more

LINUX AUTOMATION

ansible.com/get-started

AUTOMATE EVERYTHING
LINUX

Red Hat Enterprise Linux, BSD,
Debian, Ubuntu and many more!

ONLY REQUIREMENTS:
Python 2 (2.6 or later)

or Python 3 (3.5 or later)

150+
Linux Modules

https://www.ansible.com/resources/get-started

How Ansible Automation works

NETWORKING
DEVICES

LINUX/WINDOWS
HOSTS

Module code is
copied to the
managed node,
executed, then
removed

Module code is
executed locally
on the control
node

28

● Follow the steps to access environment
● Use the IP provided to you, the script only has example IP
● Which editor do you use on command line?

If you don’t know, we have a short intro

Verify Access

Lab Time
Complete exercise 1.1 now in your lab environment

30

Exercise 1.2
Topics Covered:

● Ansible inventories

● Main Ansible config file

● Modules and ad-hoc commands

31

● Ansible works against multiple systems in an inventory
● Inventory is usually file based
● Can have multiple groups
● Can have variables for each group or even host

Inventory

Static inventory example:
[myservers]
10.42.0.2
10.42.0.6
10.42.0.7
10.42.0.8
10.42.0.100
host.example.com

Understanding Inventory - Basic

[app1srv]
appserver01 ansible_host=10.42.0.2
appserver02 ansible_host=10.42.0.3

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[web:vars]
apache_listen_port=8080
apache_root_path=/var/www/mywebdocs/

[all:vars]
ansible_user=kev
ansible_ssh_private_key_file=/home/kev/.ssh/id_rsa

Understanding Inventory - Basic

[app1srv]
appserver01 ansible_host=10.42.0.2
appserver02 ansible_host=10.42.0.3

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[web:vars]
apache_listen_port=8080
apache_root_path=/var/www/mywebdocs/

[all:vars]
ansible_user=ender
ansible_ssh_private_key_file=/home/ender/.ssh/id_rsa

Understanding Inventory - Variables

[nashville]
bnaapp01
bnaapp02

[atlanta]
atlapp03
atlapp04

[south:children]
atlanta
nashville
hsvapp05

Understanding Inventory - Groups

36

● Basic configuration for Ansible
● Can be in multiple locations, with different precedence
● Here: .ansible.cfg in the home directory
● Configures where to find the inventory

Configuration File

Configuration files will be searched for in the following order:

37

➔ ANSIBLE_CONFIG (environment variable if set)

➔ ansible.cfg (in the current directory)

➔ ~/.ansible.cfg (in the home directory)

➔ /etc/ansible/ansible.cfg (installed as Ansible default)

The Ansible Configuration

38

● Single Ansible command to perform a task quickly directly on
command line

● Most basic operation that can be performed
● Here: an example Ansible ping - not to be confused with ICMP

$ ansible all -m ping

First Ad-Hoc Command: ping

ping

Groups can be nested

Check connections (submarine ping, not ICMP)
[user@ansible] $ ansible all -m ping

web1 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python":
"/usr/bin/python"
 },
 "changed": false,
 "ping": "pong"
}

39

Ad-Hoc Commands

40

Some basics to keep you from getting stuck
--help (Display some basic and extensive options)

[user@ansible ~]$ ansible --help-
Usage: ansible <host-pattern> [options]

Define and run a single task 'playbook' against a set of hosts

Options:
 -a MODULE_ARGS, --args=MODULE_ARGS
 module arguments
 --ask-vault-pass ask for vault password
 -B SECONDS, --background=SECONDS
<<<snippet, output removed for brevity>>>

The Ansible Command

Here are some common options you might use:

41

-m MODULE_NAME, --module-name=MODULE_NAME
Module name to execute the ad-hoc command

-a MODULE_ARGS, --args=MODULE_ARGS
Module arguments for the ad-hoc command

-b, --become
Run ad-hoc command with elevated rights such as sudo, the default method

-e EXTRA_VARS, --extra-vars=EXTRA_VARS
Set additional variables as key=value or YAML/JSON

Ad-Hoc Commands

Here are some common options you might use:

Groups can be nested

Check connections to all (submarine ping, not ICMP)
[user@ansible] $ ansible all -m ping

Run a command on all the hosts in the web group
[user@ansible] $ ansible web -m command -a "uptime"

Collect and display known facts for server “web1”
[user@ansible] $ ansible web1 -m setup

42

Ad-Hoc Commands

Lab Time
Complete exercise 1.2 now in your lab environment

44

Exercise 1.3
Topics Covered:

● Playbooks basics

● Running a playbook

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

An Ansible Playbook

A play

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

An Ansible Playbook

A task

- name: install and start apache
 hosts: web
 become: yes

 tasks:
 - name: httpd package is present

 yum:
 name: httpd
 state: latest

 - name: latest index.html file is present
 template:
 src: files/index.html
 dest: /var/www/html/

 - name: httpd is started
 service:
 name: httpd
 state: started

An Ansible Playbook

module

48

A task executed as expected, no change was made.

A task executed as expected, making a change

A task failed to execute successfully

The most important colors of Ansible

Running an Ansible Playbook:

49

[user@ansible] $ ansible-playbook apache.yml

PLAY [webservers] ***

TASK [Gathering Facts] **
ok: [web2]
ok: [web1]
ok: [web3]

TASK [Ensure httpd package is present] **
changed: [web2]
changed: [web1]
changed: [web3]

TASK [Ensure latest index.html file is present] ***
changed: [web2]
changed: [web1]
changed: [web3]

TASK [Restart httpd] **
changed: [web2]
changed: [web1]
changed: [web3]

PLAY RECAP **
web2 : ok=1 changed=3 unreachable=0 failed=0
web1 : ok=1 changed=3 unreachable=0 failed=0
web3 : ok=1 changed=3 unreachable=0 failed=0

Running an Ansible Playbook

Lab Time
Complete exercise 1.3 now in your lab environment

51

Exercise 1.4
Topics Covered:

● Working with variables

● What are facts?

- name: variable playbook test
 hosts: localhost

 vars:
 var_one: awesome
 var_two: ansible is
 var_three: "{{ var_two }} {{ var_one }}"

 tasks:

 - name: print out var_three
 debug:
 msg: "{{var_three}}"

An Ansible Playbook Variable Example

- name: variable playbook test
 hosts: localhost

 vars:
 var_one: awesome
 var_two: ansible is
 var_three: "{{ var_two }} {{ var_one }}"

 tasks:

 - name: print out var_three
 debug:
 msg: "{{var_three}}"

An Ansible Playbook Variable Example

ansible is awesome

54

● Just like variables, really...
● ...but: coming from the host itself!
● Check them out with the setup module

Facts

 "ansible_facts": {
 "ansible_default_ipv4": {
 "address": "10.41.17.37",
 "macaddress": "00:69:08:3b:a9:16",
 "interface": "eth0",
...

Gather facts on target machine

55

$ ansible localhost -m setup
localhost | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "192.168.122.1",
 "172.21.208.111"
],
 "ansible_all_ipv6_addresses": [
 "fe80::8f31:b68d:f487:2775"
],

56

 vars:
 mynewip: 10.7.62.39-

 "ansible_facts": {
 "ansible_default_ipv4": {
 "address": "10.41.17.37",
 "macaddress": "00:69:08:3b:a9:16",
 "interface": "eth0",
...

DEVICE="{{ ansible_default_ipv4.interface }}"
ONBOOT=yes
HWADDR={{ ansible_default_ipv4.macaddress }}
TYPE=Ethernet
BOOTPROTO=static
IPADDR={{ mynewip }}

This is a template
file for ifcfg-eth0,
using a mix of
discovered facts and
variables to write
the static file.

A variable, defined
in our playbook

Ansible Variables and Facts

Ansible can work with metadata from various sources as variables. Different
sources will be overridden in an order of precedence.

57

1. extra vars (Highest - will override
anything else)

2. task vars (overridden only for the task)
3. block vars (overridden only for tasks in

block)
4. role and include vars
5. play vars_files
6. play vars_prompt
7. play vars
8. set_facts

9. registered vars
10. host facts
11. playbook host_vars

12. playbook group_vars
13. inventory host_vars
14. inventory group_vars
15. inventory vars
16. role defaults (Lowest - will be

overridden by anything else
listed here)

Variable Precedence

58

[user@ansible ~]$ tree /somedir

/somedir
├── group_vars
│ └── app1srv
│ └── db
│ └── web
├── inventory
└── host_vars
 └─ app01
 └─ app02
 └─ app03

Ansible Inventory - Managing Variables In Files

[user@ansible ~]$ cat /somedir/group_vars/web

apache_listen_port: 8080
apache_root_path: /var/www/mywebdocs/

59

[user@ansible ~]$ cat /somedir/host_vars/app01

owner_name: Chris P. Bacon
owner_contact: 'cbacon@mydomain.tld'
server_purpose: Application X

[user@ansible ~]$ tree
/somedir

/somedir
├── group_vars-
│ └── app1srv
│ └── db
│ └── web
├── inventory-
└── host_vars-
 └─ app01
 └─ app02
 └─ app03

[user@ansible ~]$ cat /somedir/inventory

[web]
node-[1:30] ansible_host=10.42.0.[31:60]

[appxsrv]
app01
app02
app03

Ansible Inventory - Managing Variables In Files

Lab Time
Complete exercise 1.4 now in your lab environment

61

Exercise 1.5
Topics Covered:

● Conditionals

● Handlers

● Loops

Conditionals via VARS

 vars:
 my_mood: happy

 tasks:
 - name: conditional task, based on my_mood var
 debug:
 msg: "Come talk to me. I am {{ my_mood }}!"
 when: my_mood == "happy"

Conditionals with variables

 vars:
 my_mood: happy

 tasks:
 - name: conditional task, based on my_mood var
 debug:
 msg: "Come talk to me. I am {{ my_mood }}!"
 when: my_mood == "happy"

 debug:
 msg: "Feel free to interact. I am {{ my_mood }}"
 when: my_mood != "grumpy"

Alternatively

Conditionals with facts

 tasks:
 - name: Install apache
 apt:
 name: apache2
 state: latest
 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

 - name: Install httpd
 yum:
 name: httpd
 state: latest
 when: ansible_distribution == 'RedHat'

Using the previous task state

- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 register: http_results

- name: Restart httpd
 service:
 name: httpd
 state: restart
 when: httpd_results.changed

This is NOT a handler task, but has similar function

Handler Tasks

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

handlers:
- name: restart_httpd
 service:
 name: httpd
 state: restart

A handler task is run when a referring task result shows a change

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

- name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd

Handler Tasks

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
changed: [web2]
changed: [web1]

NOTIFIED: [restart_httpd] ***
changed: [web2]
changed: [web1]

If either task
notifies a
changed result,
the handler will be
notified ONCE.

unchanged

changed

handler runs once

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

- name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd

Handler Tasks

TASK [Ensure httpd package is present] **
changed: [web2]
changed: [web1]

TASK [Standardized index.html file] ***
changed: [web2]
changed: [web1]

NOTIFIED: [restart_httpd] ***
changed: [web2]
changed: [web1]

If both of these
tasks notifies of a
changed result,
the handler will be
notified ONCE.

changed

handler runs once

changed

tasks:
- name: Ensure httpd package is present
 yum:
 name: httpd
 state: latest
 notify: restart_httpd

- name: Standardized index.html file
 copy:
 content: "This is my index.html file for {{ ansible_host }}"
 dest: /var/www/html/index.html
 notify: restart_httpd

Handler Tasks

If neither task
notifies a
changed result,
the handler
does not run.

TASK [Ensure httpd package is present] **
ok: [web2]
ok: [web1]

TASK [Standardized index.html file] ***
ok: [web2]
ok: [web1]

PLAY RECAP **
web2 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
web1 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

unchanged

unchanged

- name: Ensure users
 hosts: node1
 become: yes

 tasks:
 - name: Ensure user is present
 user:
 name: dev_user
 state: present

 - name: Ensure user is present
 user:
 name: qa_user
 state: present

 - name: Ensure user is present
 user:
 name: prod_user
 state: present

Variables & Loops
Great opportunity to use a loop

- name: Ensure users
 hosts: node1
 become: yes

 tasks:
 - name: Ensure users are present
 user:
 name: “{{item}}”
 state: present
 loop:
 - dev_user
 - qa_user
 - prod_user

Variables & Loops
Using loops to simplify tasks

Lab Time
Complete exercise 1.5 now in your lab environment

73

Exercise 1.6
Topics Covered:

● Templates

- name: Ensure apache is installed and started
 hosts: web
 become: yes
 vars:
 http_port: 80
 http_docroot: /var/www/mysite.com

 tasks:
 - name: Verify correct config file is present
 template:
 src: templates/httpd.conf.j2
 dest: /etc/httpd/conf/httpd.conf

Variables & Templates
Using a system fact or declared variable to write a file

- name: Ensure apache is installed and started
 hosts: web
 become: yes
 vars:
 http_port: 80
 http_docroot: /var/www/mysite.com

 tasks:
 - name: Verify correct config file is present
 template:
 src: templates/httpd.conf.j2
 dest: /etc/httpd/conf/httpd.conf

Variables & Templates
Using a system fact or declared variable to write a file

Excerpt from httpd.conf.j2

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses.
#
Listen 80 ## original line

Listen {{ http_port }}

DocumentRoot: The directory out of which you will serve your
documents.
DocumentRoot "/var/www/html"

DocumentRoot {{ http_docroot }}

Lab Time
Complete exercise 1.6 now in your lab environment

77

Exercise 1.7
Topics Covered:

● What are roles?

● How they look like

● Galaxy

78

● Roles: Think Ansible packages
● Roles provide Ansible with a way to load tasks, handlers, and

variables from separate files.
● Roles group content, allowing easy sharing of code with others
● Roles make larger projects more manageable
● Roles can be developed in parallel by different administrators

Better start using roles now!

Roles

79

user/

├── defaults
│ └── main.yml
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

● Defaults: default variables with
lowest precedence (e.g. port)

● Handlers: contains all handlers
● Meta: role metadata including

dependencies to other roles
● Tasks: plays or tasks

Tip: It’s common to include tasks in
main.yml with “when” (e.g. OS ==
xyz)

● Templates: templates to deploy
● Tests: place for playbook tests
● Vars: variables (e.g. override port)

Role structure

Sharing
Content

80

Ansible Galaxy

Roles, and
more

Community

Lab Time
Complete exercise 1.7 now in your lab environment

82

Exercise 1.8
Topics Covered:

● A bonus lab - try it on your own, and when

time permits

Lab Time
Complete exercise 1.8 now in your lab environment

84

Section 2
Ansible Tower

85

Exercise 2.1
Topics Covered:

● Introduction to Tower

Ansible Tower is a UI and RESTful API allowing
you to scale IT automation, manage complex
deployments and speed productivity.

• Role-based access control

• Deploy entire applications with
 push-button deployment access

• All automations are centrally logged

• Powerful workflows match your IT processes

What is Ansible Tower?

RBAC

Allow restricting playbook access to
authorized users. One team can use
playbooks in check mode (read-only)
while others have full administrative
abilities.

Push button

An intuitive user interface experience
makes it easy for novice users to
execute playbooks you allow them
access to.

RESTful API

With an API first mentality every feature
and function of Tower can be API driven.
Allow seamless integration with other
tools like ServiceNow and Infoblox.

Workflows

Ansible Tower’s multi-playbook
workflows chain any number of
playbooks, regardless of whether they
use different inventories, run as different
users, run at once or utilize different
credentials.

Enterprise integrations

Integrate with enterprise authentication
like TACACS+, RADIUS, Azure AD. Setup
token authentication with OAuth 2.
Setup notifications with PagerDuty,
Slack and Twilio.

Centralized logging

All automation activity is securely
logged. Who ran it, how they customized
it, what it did, where it happened - all
securely stored and viewable later, or
exported through Ansible Tower’s API.

Red Hat Ansible Tower

USE
CASES

USERS

CLOUD

AWS,
GOOGLE CLOUD,
AZURE,
IBM CLOUD …

INFRASTRUCTURE

LINUX,
OPENSHIFT,
WINDOWS,
VMWARE,
OPERATORS,
CONTAINERS …

NETWORK

ARISTA,
CISCO,
JUNIPER
INFOBLOX
F5 …

SECURITY

CHECKPOINT,
QRADAR,
SNORT
CYBERARK,
SPLUNK,
FORTINET …

SERVICES

DATABASES,
LOGGING,
SOURCE CONTROL
MANAGEMENT…

TRANSPORT

SSH, WINRM, NETWORK_CLI, HTTPAPI

AUTOMATE
YOUR

ENTERPRISE

ADMINS

ANSIBLE CLI & CI SYSTEMS

ANSIBLE PLAYBOOKS

….

ANSIBLE
TOWER

SIMPLE USER INTERFACE

ROLE-BASED
ACCESS CONTROL

CONFIGURATION
MANAGEMENT

APP
DEPLOYMENT

CONTINUOUS
DELIVERY

SECURITY &
COMPLIANCE

ORCHESTRATIONPROVISIONING

KNOWLEDGE
& VISIBILITY

SCHEDULED &
CENTRALIZED JOBS

TOWER API

ANSIBLE
ENGINE

OPEN SOURCE MODULE LIBRARY

PYTHON CODEBASEPLUGINS

APP DEVELOPMENT

PYTHON VENV,
NPM,
YUM,
APT,
PIP...

CLOUD.REDHAT.COM

AUTOMATION
HUB

AUTOMATION
ANALYTICS

Ansible Automation Platform

CERTIFIED COLLECTIONS

PARTNER COLLECTIONS

PERFORMANCE DASHBOARD

ORGANIZATIONAL STATS

Lab Time
Complete exercise 2.1 now in your lab environment

90

Exercise 2.2
Topics Covered:

● Inventories

● Credentials

Inventory is a collection of hosts (nodes) with
associated data and groupings that Ansible Tower
can connect to and manage.

● Hosts (nodes)
● Groups
● Inventory-specific data (variables)
● Static or dynamic sources

Inventory

Credentials are utilized by Ansible Tower for
authentication with various external resources:

● Connecting to remote machines to run jobs
● Syncing with inventory sources
● Importing project content from version

control systems
● Connecting to and managing network

devices

Centralized management of various credentials
allows end users to leverage a secret without
ever exposing that secret to them.

Credentials

Lab Time
Complete exercise 2.2 now in your lab environment

94

Exercise 2.3
Topics Covered:

● Projects

● Job Templates

Project
A project is a logical collection of Ansible
Playbooks, represented in Ansible Tower.

You can manage Ansible Playbooks and
playbook directories by placing them in a
source code management system supported
by Ansible Tower, including Git, Subversion,
and Mercurial.

Everything in Ansible Tower revolves around the
concept of a Job Template. Job Templates
allow Ansible Playbooks to be controlled,
delegated and scaled for an organization.

Job templates also encourage the reuse of
Ansible Playbook content and collaboration
between teams.

A Job Template requires:
● An Inventory to run the job against
● A Credential to login to devices.
● A Project which contains Ansible Playbooks

Job Templates

Job Templates can be found and created by clicking the Templates
button under the RESOURCES section on the left menu.

Expanding on Job Templates

Job Templates can be launched by clicking the rocketship
button for the corresponding Job Template

Executing an existing Job Template

New Job Templates can be created by clicking the plus button

Creating a new Job Template (1/2)

This New Job Template window is where the inventory, project and credential
are assigned. The red asterisk * means the field is required .

Creating a new Job Template (2/2)

Lab Time
Complete exercise 2.3 now in your lab environment

102

Exercise 2.4
Topics Covered:

● Surveys

Tower surveys allow you to configure how
a job runs via a series of questions,
making it simple to customize your jobs in
a user-friendly way.

An Ansible Tower survey is a simple
question-and-answer form that allows
users to customize their job runs.
Combine that with Tower's role-based
access control, and you can build simple,
easy self-service for your users.

Surveys

Once a Job Template is saved, the Add Survey Button will appear

Click the button to open the Add Survey window.

Creating a Survey (1/2)

The Add Survey window allows the Job Template to prompt users for one or more
questions. The answers provided become variables for use in the Ansible Playbook.

Creating a Survey (2/2)

The Add Survey window allows the Job Template to prompt users for one or more questions.
The answers provided become variables for use in the Ansible Playbook.

Creating a Survey (2/2)

When launching a job, the user will now be prompted with the Survey. The user can
be required to fill out the Survey before the Job Template will execute.

Using a Survey

Lab Time
Complete exercise 2.4 now in your lab environment

109

Exercise 2.5
Topics Covered:

● Role based access control

Role-Based Access Controls (RBAC) are
built into Ansible Tower and allow
administrators to delegate access to
inventories, organizations, and more.
These controls allow Ansible Tower to
help you increase security and streamline
management of your Ansible automation.

Role Based Access Control (RBAC)

● An organization is a logical collection of users,
teams, projects, inventories and more. All entities
belong to an organization.

● A user is an account to access Ansible Tower and
its services given the permissions granted to it.

● Teams provide a means to implement role-based
access control schemes and delegate
responsibilities across organizations.

User Management

Clicking on the Organizations button in the left menu
will open up the Organizations window

Viewing Organizations

Clicking on the Teams button in the left menu
will open up the Teams window

Viewing Teams

Clicking on the Users button in the left menu
will open up the Users window

Viewing Users

Lab Time
Complete exercise 2.5 now in your lab environment

116

Exercise 2.6
Topics Covered:

● Workflows

Workflows can be found alongside Job Templates by clicking the
Templates button under the RESOURCES section on the left menu.

Workflows

To add a new Workflow click on the green + button
This time select the Workflow Template

Adding a new Workflow Template

Fill out the required parameters and click SAVE. As soon as the
Workflow Template is saved the WORKFLOW VISUALIZER will open.

Creating the Workflow

The workflow visualizer will start as a blank canvas.
Workflow Visualizer

Visualizing a Workflow
Workflows can branch out, or converge in.

Green indicates this Job
Template will only be run if the
previous Job Template is
successful

Red indicates this Job
Template will only be run if the
previous Job Template fails

Blue indicates this Job
Template will always run

Lab Time
Complete exercise 2.6 now in your lab environment

123

Exercise 2.7
Topics Covered:

● Wrap-up

Lab Time
Complete exercise 2.7 now in your lab environment

GET STARTED JOIN THE COMMUNITY

WORKSHOPS & TRAINING SHARE YOUR STORY

ansible.com/get-started

ansible.com/tower-trial

ansible.com/workshops

Red Hat Training

ansible.com/community

 Follow us @Ansible

 Friend us on Facebook

Next Steps

http://ansible.com/get-started
https://www.ansible.com/products/tower/trial
https://www.ansible.com/workshops
https://www.redhat.com/en/services/training/all-courses-exams
https://www.ansible.com/community
https://twitter.com/ansible
https://www.facebook.com/ansibleautomation

linkedin.com/company/red-hat

youtube.com/AnsibleAutomation

facebook.com/ansibleautomation

twitter.com/ansible

github.com/ansible

127

Thank you

